Structure Reports

Online
ISSN 1600-5368

catena-Poly[[[(diethylenetriamine$\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right)$ copper(II)]- μ-cyanido- $\left.\kappa^{2} C: N\right]$ perchlorate]

Peter W. R. Corfield ${ }^{\mathbf{a} *}$ and Sylvia C. Yang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA, and ${ }^{\mathbf{b}}$ Department of Geological Sciences, The Ohio State University, Columbus, Ohio 43210, USA
Correspondence e-mail: pcorfield@fordham.edu
Received 11 April 2012; accepted 25 May 2012
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; disorder in main residue; R factor $=0.031 ; w R$ factor $=0.085$; data-to-parameter ratio $=11.1$.

The structure of the title salt, $\left\{\left[\mathrm{Cu}(\mathrm{CN})\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right)\right] \mathrm{ClO}_{4}\right\}_{n}$, is composed of copper-containing cations and perchlorate anions. The $\mathrm{Cu}^{\mathrm{II}}$ atom shows a square-pyramidal coordination, with equatorial positions occupied by the cyanide C atom $[\mathrm{Cu}-\mathrm{C}=1.990(3) \AA]$ and the N atoms of the diethylenetriamine ligand (average $\mathrm{Cu}-\mathrm{N}=2.033 \AA$), while the axial position is occupied by the N atom of a c-glide-related cyanide group. The axial $\mathrm{Cu}-\mathrm{N}$ distance of 2.340 (3) \AA is longer than the equatorial distances, reflecting Jahn-Teller distortion. The $\mathrm{Cu}^{\mathrm{II}}$ cations are linked by the cyanide groups into infinite chains along the c-axis direction. The refinement included a three-component disordered model for the perchlorate ion. Each minor site is stabilized by hydrogen bonds to $\mathrm{N}-\mathrm{H}$ donors from four surrounding cations, while one O atom of the major perchlorate site forms hydrogen bonds to three of these cations.

Related literature

There is a growing body of literature on self-assembled polymers involving copper cyanide moieties, with many examples of one- two- and three-dimensional networks, see, for example: Roof et al. (1968); Chestnut et al. (2001); Kim et al. (2005); Lim et al. (2008). Most of these structures involve Cu^{I} atoms bridged by cyanide ligands, while a smaller number are mixed-valence compounds with cyanide linkages between Cu^{I} and $\mathrm{Cu}^{\mathrm{II}}$ atoms. The present structure was prepared as a model for CN^{-}binding to copper-containing proteins (Fager \& Alben, 1972), and is a rare example of a $\mathrm{Cu}^{\mathrm{II}}$ cyanidebridged linear polymer, similar to the linear polymer reported by Zhan et al. (2007). For the CN stretching frequency, see: Alben \& Farrier (1972).

Experimental

Crystal data
$\left[\mathrm{Cu}(\mathrm{CN})\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right)\right] \mathrm{ClO}_{4}$
$M_{r}=292.18$
Monoclinic, $P 2_{1} / c$
$a=6.7767$ (8) A
$b=21.5081$ (16) \AA
$c=8.3635$ (12) \AA
$V=1075.2(2) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\beta=118.109$ (9)
$0.32 \times 0.17 \times 0.07 \mathrm{~mm}$

Data collection

Picker four-circle diffractometer Absorption correction: integration (Busing \& Levy, 1957a)
$T_{\text {min }}=0.394, T_{\text {max }}=0.697$
3044 measured reflections
1752 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031 \quad 158$ parameters
$w R\left(F^{2}\right)=0.085 \quad$ H-atom parameters constrained
$S=1.09$
1752 reflections
1625 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
6 standard reflections every 200 reflections intensity decay: none
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.35 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu}-\mathrm{C} 8$	$1.990(3)$	$\mathrm{Cu}-\mathrm{N} 7$	$2.040(3)$
$\mathrm{Cu}-\mathrm{N} 1$	$2.023(2)$	$\mathrm{Cu}-\mathrm{N} 8^{\mathrm{i}}$	$2.340(3)$
$\mathrm{Cu}-\mathrm{N} 4$	$2.034(2)$	$\mathrm{C} 8-\mathrm{N} 8$	$1.139(4)$

Symmetry code: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O}^{\text {ii }}$	0.90	2.38	3.215 (5)	154
$\mathrm{N} 4-\mathrm{H} 4 \cdots{ }^{\text {a }}{ }^{\text {iii }}$	0.91	2.42	3.214 (5)	145
$\mathrm{N} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{O}^{\text {i }}$	0.90	2.23	3.092 (4)	161
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\prime}$	0.90	2.17	2.771 (17)	124
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\text {iii }}$	0.90	2.04	2.913 (15)	164
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{Ol}^{\text {jiii }}$	0.91	2.30	3.139 (19)	154
$\mathrm{N} 7-\mathrm{H} 7 A \cdots 3^{\text {i }}$	0.90	2.14	3.040 (16)	173
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\prime \prime}$	0.90	2.21	3.06 (4)	156
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 4^{\prime \prime \mathrm{ii}}$	0.90	2.51	3.21 (3)	135
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\prime \prime \prime \mathrm{iii}}$	0.91	2.12	2.99 (3)	160
$\mathrm{N} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{O}^{\prime \prime}{ }^{\text {i }}$	0.90	2.45	3.24 (3)	147
$\mathrm{N} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 4^{\prime \prime}$	0.90	2.50	3.04 (3)	119

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x-1, y, z$; (iii) $x, y, z+1$.

Data collection: locally modified program (Corfield, 1972); cell refinement: locally modified program (Corfield, 1972); data reduction: cell refinements and data reduction follow procedures in Corfield et al. (1967) and Corfield \& Shore (1973); standard deviations of intensities include an ignorance factor (Busing \& Levy, 1957b) set here to 0.06 ; program(s) used to solve structure: local superposition program (Corfield, 1972); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We acknowledge gratefully the provision of a crystalline sample by James O. Alben and N. J. Farrier, as well as partial support from the National Science Foundation through equipment grant GP8534 awarded to the Ohio State University, where the experimental work was carried out.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2408).

References

Alben, J. O. \& Farrier, N. (1972). Personal communication.
Busing, W. R. \& Levy, H. A. (1957a). Acta Cryst. 10, 180-182.
Busing, W. R. \& Levy, H. A. (1957b). J. Chem. Phys. 26, 563-568
Chestnut, D. J., Plewak, D. \& Zubieta, J. (2001). J. Chem. Soc. Dalton Trans. pp. 2567-2580.
Corfield, P. W. R. (1972). Local versions of standard programs, written at Ohio State University.
Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-204.
Corfield, P. W. R. \& Shore, S. G. (1973). J. Am. Chem. Soc. 95, 1480-1487.
Fager, L. Y. \& Alben, J. O. (1972). Biochemistry, 11, 4786-4792.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kim, D., Koo, J., Hong, C. S., Oh, S. \& Do, Y. (2005). Inorg. Chem. 44, 43834390.

Lim, M. J., Murray, C. A., Tronic, T. A., deKrafft, K. E., Ley, A. N., de Butts, J. C., Pike, R. D., Lu, H. \& Patterson, H. H. (2008). Inorg. Chem. 47, 69316947.

Roof, R. B., Larson, A. C. \& Cromer, D. T. (1968). Acta Cryst. B24, 269-273. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhan, S.-Z., Li, W., Wang, J.-G., Liang, A.-Q. \& Deng, Y.-F. (2007). J. Organomet. Chem. 692, 3568-3573.

supplementary materials

catena-Poly[[[(diethylenetriamine- $\left.\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right) \operatorname{copper}(\mathrm{II})\right]-\mu$-cyanido- $\left.\kappa^{2} C: N\right]$ perchlorate]

Peter W. R. Corfield and Sylvia C. Yang

Comment

The title compound, $\left[\mathrm{Cu}(\right.$ dien $) \mathrm{CN}^{2} \mathrm{ClO}_{4}$, (Fig. 1), was originally prepared as a simple model for CN binding to coppercontaining proteins, with the expectation that structural data would supplement information from infra-red studies on cyanide binding to the proteins. (Fager and Alben, 1972) The structure is reported now in light of current interest in cyanide-bridged copper polymers.
The crystal structure consists of cyanidodiethylenetriaminecopper(II) cations and perchlorate anions. The cyanide groups link c-glide related copper atoms to form infinite chains along the c axis, as shown in Fig. 2. The coordination of the copper atoms is square pyramidal, with the terdentate diethylenetriamine ligand and the carbon atom of the cyanide group in equatorial positions, and the nitrogen atom of a symmetry-related cyanide group in the axial position.
Atom O 4 of the perchlorate group would occupy the sixth coordination site of the $\mathrm{Cu}^{\text {II }}$ atom if the $\mathrm{Cu}-\mathrm{O} 4$ distance of 2.956 (4) \AA represented a chemical bond, making the copper atom octahedrally coordinated. Perchlorate anions rarely coordinate, however, and we prefer the square pyramidal designation, in view of the long $\mathrm{Cu}-\mathrm{O} 4$ distance, and the displacement of the copper atom by 0.237 (1) \AA towards the axial nitrogen atom and away from the perchlorate O 4 atom. Furthermore, the O 4 atom has similar $U_{\text {eq }}$ values to the other perchlorate oxygen atoms, and is disordered in the same way, whereas bonding to the Cu atom would be expected to localize the atom O 4 .
The $\mathrm{Cu}-\mathrm{C}-\mathrm{N}$ angle at the cyanide carbon atom is close to linear, at $175.9(3)^{\circ}$, but the $\mathrm{C}-\mathrm{N}-\mathrm{Cu}$ angle at the bridging cyanide nitrogen atom is 146.5 (2) ${ }^{\circ}$, significantly different from 180°. The $\mathrm{C}-\mathrm{N}$ bond length is 1.139 (4) \AA, similar to the terminal bond length of $1.129 \AA$ in $\mathrm{K}_{3} \mathrm{Cu}(\mathrm{CN})_{4}$, (Roof et al., 1968).
In the diethylenetriamine ligand, the carbon atoms in each chelate ring lie on opposite sides of the corresponding CuN_{2} plane. The $\mathrm{Cu}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4$ chelate ring has the λ conformation, with torsional angle $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 4$ equal to $-51.9(3)^{\circ}$, while the other chelate ring has the δ conformation, with the $\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 7$ torsional angle equal to +51.9 (3) ${ }^{\circ}$.
Two minor alternative orientations for the perchlorate anion were refined, related to the major orientation by rotation about the $\mathrm{Cl}-\mathrm{O} 2$ bond, by 34° in one direction, and 25° in the other. (Fig. 3) Each minor site is stabilized by hydrogen bonds to $\mathrm{N}-\mathrm{H}$ donors from four surrounding cations, while atom O 3 of the major perchlorate site forms hydrogen bonds to three of these cations.

Experimental

The compound was prepared by addition of stoichiometric amounts of diethylenetriamine and potassium cyanide to a solution of copper(II) perchlorate. Calculated elemental analysis, based upon $\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{ClCuN}_{4} \mathrm{O}_{4}: \mathrm{C}, 20.55 \% ; \mathrm{H}, 4.48 \% ; \mathrm{N}$, 19.18%. Found: C, $20.60,20.66 \%$; H, $4.98,4.58 \% ;$ N, 19.02%. The CN stretching frequency was $2141.4 \mathrm{~cm}^{-1}$ (Alben and Farrier, 1972).

Refinement

All 13 hydrogen atoms of the diethylenetriamine ligand were found unambiguously in a difference Fourier map, and were initially refined freely. In the final refinements, hydrogen atoms were constrained to idealized positions by SHELXL97.
The assignment of C and N atoms in the cyanide group was checked early in the analysis by carrying out a least-squares refinement with the N and C atoms of the cyanide group reversed. The weighted R factor increased significantly from 0.061 to 0.091 . There is no evidence of disorder between the C and N atoms of the cyanide group.

Perchlorate ion disorder: Refinement of a single anisotropic perchlorate group converged successfully with wR2 $=0.1091$ for all 1752 reflections. The thermal parameters indicated large librations about the $\mathrm{Cl}-\mathrm{O} 2$ bond however, and difference Fourier maps indicated two minor alternative orientations for the perchlorate group.
After initial stringent constraints, the three orientations were refined freely, with common Cl and O 2 atoms. The main orientation (O1-O4) was refined anisotropically, with an occupancy fixed at 70%. The two minor orientations (O1'-O4') and ($\mathrm{O} 1^{\prime \prime}-\mathrm{O}^{\prime \prime}$) were given occupancy factors of 18% and 12% respectively, based upon heights found in difference Fourier maps. U values for $\mathrm{O} 1^{\prime}$ and $\mathrm{O}^{\prime \prime}$, $\mathrm{O} 3^{\prime}$ and $\mathrm{O}^{\prime \prime}$, and $\mathrm{O} 4^{\prime}$ and $\mathrm{O} 4^{\prime \prime}$ were constrained to be equal. This model reduced wR2 significantly from 0.1091 to 0.0847 , with the addition of 22 new parameters.

Computing details

Data collection: locally modified program (Corfield, 1972); cell refinement: locally modified program (Corfield, 1972); data reduction: cell refinements and data reduction follow procedures in (Corfield et al., 1967) and (Corfield \& Shore, 1973). Standard deviations of intensities include an ignorance factor (Busing \& Levy, 1957b) set here to 0.06; program(s) used to solve structure: local superposition program (Corfield, 1972); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1
The molecular structure of the $[\mathrm{Cu}(\mathrm{dien}) \mathrm{CN}]$ cation and the major component of the perchlorate anion, with ellipsoids at the 50% level. Atoms $\mathrm{C} 8^{\prime}$ and $\mathrm{N} 8^{\prime}$ are C 8 and N 8 at $\mathrm{x}, 1 / 2-\mathrm{y}, 1 / 2+\mathrm{z}$.

supplementary materials

Figure 2
Packing of $[\mathrm{Cu}($ dien $) \mathrm{CN}] \mathrm{ClO}_{4}$, viewed down the a axis. The darkened bonds show the $\mathrm{Cu}-\mathrm{CN}-\mathrm{Cu}$ chains along the c axis. Only the major perchlorate component is shown.

Figure 3
The disordered perchlorate anion, with ellipsoids drawn at the 25% probability level.
catena-Poly[[[(diethylenetriamine- $\left.\left.\kappa^{3} N, N^{\prime}, N^{\prime \prime}\right) \operatorname{copper}(\mathrm{II})\right]-\mu$-cyanido- $\left.\kappa^{2} C: N\right]$ perchlorate]

Crystal data

$\left[\mathrm{Cu}(\mathrm{CN})\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right)\right] \mathrm{ClO}_{4}$
$M_{r}=292.18$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.7767$ (8) A
$b=21.5081(16) \AA$
$c=8.3635(12) \AA$
$\beta=118.109(9)^{\circ}$
$V=1075.2(2) \AA^{3}$
$Z=4$
$F(000)=596$

Data collection

Picker four-circle
diffractometer
Radiation source: sealed X-ray tube
$D_{\mathrm{x}}=1.806 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{\mathrm{m}}=1.805 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in chloroform/bromoform mixtures
Melting point: 471(2) K
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.5418 \AA$
Cell parameters from 25 reflections
$\theta=4-52^{\circ}$
$\mu=5.29 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Plate, dark blue
$0.32 \times 0.17 \times 0.07 \mathrm{~mm}$

Oriented graphite 200 reflection
monochromator
$\theta / 2 \theta$ scans

Absorption correction: integration
(Busing \& Levy, 1957a)
$T_{\text {min }}=0.394, T_{\max }=0.697$
3044 measured reflections
1752 independent reflections
1625 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
Refinement
Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.085$
$S=1.09$
1752 reflections
158 parameters
0 restraints
Primary atom site location: heavy-atom method Secondary atom site location: real-space vector search

$$
\begin{aligned}
& \theta_{\max }=63.3^{\circ}, \theta_{\min }=4.1^{\circ} \\
& h=-7 \rightarrow 6 \\
& k=0 \rightarrow 24 \\
& l=0 \rightarrow 9
\end{aligned}
$$

6 standard reflections every 200 reflections intensity decay: none

```
Hydrogen site location: difference Fourier map
H -atom parameters constrained
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.010 P)^{2}+1.140 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}\)
\(\Delta \rho_{\text {min }}=-0.35\) e \(\AA^{-3}\)
Extinction correction: SHELXL97 (Sheldrick, 2008), \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.0010 (2)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against all reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
Cu	$0.15547(7)$	$0.322023(18)$	$0.63505(5)$	$0.03271(18)$	
N1	$-0.0930(4)$	$0.38484(12)$	$0.5101(3)$	$0.0426(6)$	
H1A	-0.0788	0.4034	0.4197	0.051^{*}	0.051^{*}
H1B	-0.2264	0.3655	0.4620	$0.0499(8)$	
C2	$-0.0818(6)$	$0.43180(15)$	$0.6424(5)$	0.075^{*}	
H2A	-0.1495	0.4157	0.7135	0.075^{*}	$0.0433(7)$
H2B	-0.1626	0.4689	0.5799	0.065^{*}	
C3	$0.1595(5)$	$0.44708(14)$	$0.7639(4)$	0.065^{*}	
H3A	0.2220	0.4689	0.6965	$0.0321(5)$	
H3B	0.1743	0.4734	0.8632	0.038^{*}	
N4	$0.2770(4)$	$0.38751(10)$	$0.8338(3)$	$0.0410(7)$	
H4	0.2433	0.3746	0.9217	0.061^{*}	
C5	$0.5219(5)$	$0.38908(15)$	$0.9155(4)$	1.0307	$0.0481(8)$
H5A	0.5851	0.4108	0.8360	0.072^{*}	
H5B	0.5674	0.4104	$0.9427(5)$	0.072^{*}	
C6	$0.6010(6)$	$0.32285(15)$	0.9809		
H6A	0.7601	0.3214	1.0358		
H6B	0.5750	0.3034			

N7	$0.4756(4)$	$0.28942(12)$	$0.7688(4)$	$0.0430(6)$	
H7A	0.4741	0.2484	0.7900	0.052^{*}	
H7B	0.5436	0.2949	0.6997	0.052^{*}	
C8	$0.0609(5)$	$0.26492(13)$	$0.4243(4)$	$0.0344(6)$	
N8	$0.0196(4)$	$0.23248(12)$	$0.3050(3)$	$0.0428(6)$	
Cl	$0.30284(12)$	$0.40553(3)$	$0.28806(10)$	$0.0381(2)$	
O2	$0.4055(5)$	$0.45800(12)$	$0.2534(4)$	$0.0653(7)$	0.70
O1	$0.0662(8)$	$0.4083(3)$	$0.1838(8)$	$0.0782(19)$	0.70
O3	$0.3915(7)$	$0.35240(17)$	$0.2420(6)$	$0.0528(10)$	0.70
O4	$0.3631(8)$	$0.4055(2)$	$0.4760(6)$	$0.0593(12)$	0.18
O1' $^{\prime}$	$0.109(3)$	$0.3883(9)$	$0.125(3)$	$0.069(5)^{*}$	0.18
O3' $^{\prime}$	$0.440(3)$	$0.3468(7)$	$0.349(2)$	$0.053(3)^{*}$	0.18
O4 $^{\prime}$	$0.238(3)$	$0.4161(8)$	$0.419(2)$	$0.056(4)^{*}$	0.12
O1' $^{\prime \prime}$	$0.077(8)$	$0.421(2)$	$0.243(5)$	$0.069(5)^{*}$	0.12
O3' $^{\prime \prime}$	$0.286(4)$	$0.3518(13)$	$0.183(4)$	$0.053(3)^{*}$	0.12
O4' $^{\prime \prime}$	$0.413(5)$	$0.3815(12)$	$0.474(4)$	$0.056(4)^{*}$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	$0.0355(3)$	$0.0299(3)$	$0.0297(3)$	$0.00199(16)$	$0.0128(2)$	$-0.00357(15)$
N 1	$0.0402(14)$	$0.0407(14)$	$0.0389(14)$	$0.0040(11)$	$0.0121(12)$	$-0.0018(11)$
C 2	$0.0497(19)$	$0.0416(17)$	$0.052(2)$	$0.0151(15)$	$0.0190(16)$	$-0.0018(15)$
C 3	$0.0522(19)$	$0.0309(15)$	$0.0435(17)$	$0.0043(14)$	$0.0199(15)$	$-0.0045(13)$
N 4	$0.0355(13)$	$0.0314(12)$	$0.0303(12)$	$-0.0007(10)$	$0.0163(10)$	$-0.0003(10)$
C 5	$0.0367(16)$	$0.0461(17)$	$0.0388(17)$	$-0.0075(13)$	$0.0167(14)$	$-0.0099(14)$
C 6	$0.0366(17)$	$0.055(2)$	$0.0430(19)$	$0.0044(14)$	$0.0104(15)$	$-0.0033(14)$
N 7	$0.0421(14)$	$0.0380(14)$	$0.0494(15)$	$0.0046(11)$	$0.0218(12)$	$-0.0046(12)$
C 8	$0.0376(16)$	$0.0335(15)$	$0.0346(16)$	$0.0034(12)$	$0.0191(13)$	$0.0034(13)$
N 8	$0.0528(16)$	$0.0386(14)$	$0.0365(14)$	$0.0052(12)$	$0.0206(12)$	$-0.0040(12)$
C 1	$0.0391(4)$	$0.0397(4)$	$0.0381(4)$	$-0.0016(3)$	$0.0203(3)$	$-0.0039(3)$
O 2	$0.0807(18)$	$0.0531(15)$	$0.0723(17)$	$-0.0186(13)$	$0.0446(15)$	$0.0014(13)$
O 1	$0.030(2)$	$0.077(4)$	$0.095(5)$	$0.003(2)$	$0.003(3)$	$-0.005(4)$
O 3	$0.068(3)$	$0.0388(19)$	$0.064(3)$	$0.005(2)$	$0.041(3)$	$-0.0087(19)$
O 4	$0.069(3)$	$0.081(3)$	$0.0335(19)$	$-0.017(3)$	$0.029(2)$	$-0.010(2)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{C} 8$	$1.990(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9700
$\mathrm{Cu}-\mathrm{N} 1$	$2.023(2)$	$\mathrm{C} 6-\mathrm{N} 7$	$1.480(4)$
$\mathrm{Cu}-\mathrm{N} 4$	$2.034(2)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	0.9700
$\mathrm{Cu}-\mathrm{N} 7$	$2.040(3)$	$\mathrm{C} 6-\mathrm{H} 6 \mathrm{~B}$	0.9700
$\mathrm{Cu}-\mathrm{N} 8^{\mathrm{i}}$	$2.340(3)$	$\mathrm{N} 7-\mathrm{H} 7 \mathrm{~A}$	0.9000
$\mathrm{~N} 1-\mathrm{C} 2$	$1.474(4)$	$\mathrm{N} 7-\mathrm{H} 7 \mathrm{~B}$	0.9000
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~A}$	0.9000	$\mathrm{C} 8-\mathrm{N} 8$	$1.139(4)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	0.9000	$\mathrm{~N} 8-\mathrm{Cu}$	$2.340(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.500(5)$	$\mathrm{Cl}-\mathrm{O} 1$	$1.420(5)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	$\mathrm{Cl}-\mathrm{O} 2$	$1.425(2)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700	$\mathrm{Cl}-\mathrm{O} 3$	$1.426(4)$

C3-N4	1.476 (4)	$\mathrm{Cl}-\mathrm{O} 4$	1.426 (4)
C3-H3A	0.9700	$\mathrm{Cl}-\mathrm{O1}^{\prime}$	1.43 (2)
C3-H3B	0.9700	$\mathrm{Cl}-\mathrm{O}^{\prime}$	1.507 (15)
N4-C5	1.467 (4)	$\mathrm{Cl}-\mathrm{O}^{\prime}$	1.376 (16)
N4-H4	0.9100	$\mathrm{Cl}-\mathrm{O} 1^{\prime \prime}$	1.44 (5)
C5-C6	1.501 (4)	$\mathrm{Cl}-\mathrm{O} 3^{\prime \prime}$	1.42 (3)
C5-H5A	0.9700	$\mathrm{Cl}-\mathrm{O} 4^{\prime \prime}$	1.46 (3)
$\mathrm{C} 8-\mathrm{Cu}-\mathrm{N} 1$	96.45 (11)	C6-C5-H5A	110.3
$\mathrm{C} 8-\mathrm{Cu}-\mathrm{N} 4$	171.38 (11)	N4-C5-H5B	110.3
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 4$	82.98 (10)	C6-C5-H5B	110.3
$\mathrm{C} 8-\mathrm{Cu}-\mathrm{N} 7$	95.09 (11)	H5A-C5-H5B	108.6
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 7$	157.48 (11)	N7-C6-C5	108.3 (3)
$\mathrm{N} 4-\mathrm{Cu}-\mathrm{N} 7$	82.73 (10)	N7-C6-H6A	110.0
$\mathrm{C} 8-\mathrm{Cu}-\mathrm{N} 8^{\text {i }}$	100.04 (10)	C5-C6-H6A	110.0
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 8^{\text {i }}$	100.27 (11)	N7-C6-H6B	110.0
$\mathrm{N} 4-\mathrm{Cu}-\mathrm{N} 8^{\text {i }}$	88.51 (9)	C5-C6-H6B	110.0
$\mathrm{N} 7-\mathrm{Cu}-\mathrm{N} 8^{\text {i }}$	96.66 (10)	H6A-C6-H6B	108.4
C2-N1-Cu	109.50 (19)	C6-N7-Cu	109.98 (19)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.8	C6-N7-H7A	109.7
$\mathrm{Cu}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.8	$\mathrm{Cu}-\mathrm{N} 7-\mathrm{H} 7 \mathrm{~A}$	109.7
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.8	C6-N7-H7B	109.7
$\mathrm{Cu}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.8	$\mathrm{Cu}-\mathrm{N} 7-\mathrm{H} 7 \mathrm{~B}$	109.7
H1A-N1-H1B	108.2	H7A-N7-H7B	108.2
N1-C2-C3	108.2 (3)	N8-C8-Cu	175.9 (3)
N1-C2-H2A	110.1	$\mathrm{C} 8-\mathrm{N} 8-\mathrm{Cu}^{\text {ii }}$	146.5 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.1	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{O} 2$	111.1 (3)
N1-C2-H2B	110.1	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{O} 3$	111.4 (3)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.1	$\mathrm{O} 1-\mathrm{Cl}-\mathrm{O} 4$	109.3 (3)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.4	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O} 3$	105.7 (2)
$\mathrm{N} 4-\mathrm{C} 3-\mathrm{C} 2$	106.9 (2)	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O} 4$	108.1 (2)
N4-C3-H3A	110.3	$\mathrm{O} 3-\mathrm{Cl}-\mathrm{O} 4$	111.1 (3)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.3	$\mathrm{O} 1^{\prime}-\mathrm{Cl}-\mathrm{O} 2$	109.3 (8)
N4-C3-H3B	110.3	$\mathrm{O} 1^{\prime}-\mathrm{Cl}-\mathrm{O}^{\prime}$	104.4 (10)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.3	$\mathrm{O} 1^{\prime}-\mathrm{Cl}-\mathrm{O}^{\prime}$	107.9 (11)
H3A-C3-H3B	108.6	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O}^{\prime}$	116.7 (6)
C5-N4-C3	116.4 (2)	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O}^{\prime}$	113.6 (7)
C5-N4-Cu	109.27 (17)	$\mathrm{O} 3^{\prime}-\mathrm{Cl}-\mathrm{O}^{\prime}$	104.3 (9)
C3-N4-Cu	110.01 (18)	$\mathrm{O} 1^{\prime \prime}-\mathrm{Cl}-\mathrm{O} 2$	108.8 (18)
C5-N4-H4	106.9	$\mathrm{O} 1^{\prime \prime}-\mathrm{Cl}-\mathrm{O}^{\prime \prime}$	105.5 (17)
C3-N4-H4	106.9	$\mathrm{O} 1^{\prime \prime}-\mathrm{Cl}-\mathrm{O} 4^{\prime \prime}$	108 (2)
$\mathrm{Cu}-\mathrm{N} 4-\mathrm{H} 4$	106.9	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O}^{\prime \prime}$	114.8 (11)
N4-C5-C6	107.1 (2)	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O}^{\prime \prime}$	116.1 (12)
N4-C5-H5A	110.3	$\mathrm{O} 3 \prime \prime-\mathrm{Cl}-\mathrm{O} 4 \prime \prime$	102.8 (15)
N1-C2-C3-N4	-51.9 (3)	N4-C5-C6-N7	51.9 (3)

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (ii) $x,-y+1 / 2, z-1 / 2$.

supplementary materials

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 18 \cdots \mathrm{O} 3{ }^{\text {iii }}$	0.90	2.38	3.215 (5)	154
$\mathrm{N} 4-\mathrm{H} 4 \cdots{ }^{\text {a }}{ }^{\text {iv }}$	0.91	2.42	3.214 (5)	145
$\mathrm{N} 7-\mathrm{H} 74 \cdots{ }^{-}{ }^{\text {i }}$	0.90	2.23	3.092 (4)	161
N1—H1A $\cdots{ }^{\prime} 4^{\prime}$	0.90	2.17	2.771 (17)	124
$\mathrm{N} 1-\mathrm{H} 1 B^{\cdots} \mathrm{O}^{\prime}{ }^{\text {'iii }}$	0.90	2.04	2.913 (15)	164
N4- $\mathrm{H} \cdots \cdots 1^{\text {iv }}$	0.91	2.30	3.139 (19)	154
N7-H7A $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.90	2.14	3.040 (16)	173
$\mathrm{N} 1-\mathrm{H} 1 A^{\cdots} \mathrm{O} 1^{\prime \prime}$	0.90	2.21	3.06 (4)	156
$\mathrm{N} 1-\mathrm{H} 1 B^{\cdots}{ }^{\prime} 4^{\prime \prime \mathrm{iii}}$	0.90	2.51	3.21 (3)	135
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O} 3^{\prime \prime}{ }^{\text {iv }}$	0.91	2.12	2.99 (3)	160
$\mathrm{N} 7-\mathrm{H} 7 A^{\cdots} \mathrm{O} 3^{\prime \prime \mathrm{i}}$	0.90	2.45	3.24 (3)	147
N7-H7B \cdots O4"	0.90	2.50	3.04 (3)	119

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$; (iii) $x-1, y, z$; (iv) $x, y, z+1$.

